A mediator for multiple trackers in long-term scenario

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Maia, Helena de Almeida lattes
Orientador(a): Vieira, Marcelo Bernardes lattes
Banca de defesa: Silva, Rodrigo Luis de Souza da lattes, Pedrini, Hélio lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4841
Resumo: Nos últimos anos, o rastreador TLD (Tracking-Learning-Detection) se destacou por combinar um método de rastreamento através do movimento aparente e um método de detecção para o problema de rastreamento de objetos em vídeos. O detector identifica o objeto pelas aparências supostamente confirmadas. O rastreador insere novas aparências no modelo do detector estimando o movimento aparente. A integração das duas respostas é realizada através da mesma métrica de similaridade utilizada pelo detector que pode levar a uma decisão enviesada. Neste trabalho, é proposto um framework para métodos baseados em múltiplos rastreadores onde o componente responsável pela integração das respostas é independente dos rastreadores. Este componente é denominado mediador. Seguindo este framework, um novo método é proposto para integrar o rastreador por movimento e o detector do rastreador TLD pela combinação das suas estimativas. Os resultados mostram que, quando a integração é independente das métricas de ambos os rastreadores, a performance é melhorada para objetos com significativas variações de aparência durante o vídeo.