Análise integrada de métodos moleculares e sorológicos para diagnóstico de hanseníase e monitoramento de contatos domiciliares

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Gama, Rafael Silva lattes
Orientador(a): Garcia, Raúl Marcel González lattes
Banca de defesa: Grossi, Maria Aparecida de Faria lattes, Rosa, Patrícia Sammarco lattes, Vasconcelos, Eveline Gomes lattes, Macedo, Gilson Costa lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Ciências Biológicas: Imunologia e Doenças Infecto-Parasitárias/Genética e Biotecnologia
Departamento: ICB – Instituto de Ciências Biológicas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/6661
Resumo: O diagnóstico da hanseníase é eminentemente clínico, podendo ser complementado com baciloscopia, histopatologia e testes imunológicos. Métodos bacteriológicos clássicos para identificação de bactérias patogênicas não podem ser aplicados para o diagnóstico de hanseníase, sobretudo pela impossibilidade de cultivo in vitro do M. leprae. O exame histopatológico e a baciloscopia têm sido utilizados como métodos auxiliares para a classificação clínica dos casos. Técnicas moleculares e sorológicas têm sido avaliadas como ferramentas de diagnóstico na hanseníase. Ao contrário da baciloscopia, que requer cerca de 104 organismos por grama de tecido para detecção real, a PCR é uma técnica de alta especificidade e sensibilidade, capaz de detectar 25 fg (10-15g) de DNA de M. leprae. Além disso, a possibilidade de sua utilização em quase todos os tipos de amostras clínicas confere a este método um alto potencial para o diagnóstico diferencial. Os testes sorológicos têm como alvo a detecção de anticorpos específicos contra o M. leprae que indicam infecção. Esses testes podem ser úteis no monitoramento da eficácia da terapia, na determinação da prevalência da doença e na avaliação da distribuição da infecção entre contatos domiciliares. Considera-se que o indivíduo que reside ou tenha residido com o doente de hanseníase apresenta maior risco de adoecimento em relação à população em geral, pelo fato de estarem expostos ao M. leprae. Familiares de pacientes Multibacilar e Paucibacilar devem ser examinados, independente do tempo de convívio. Sugere-se avaliar anualmente, durante cinco anos, todos os contatos não doentes, quer sejam familiares ou sociais. Neste estudo utilizou-se o suporte da Inteligência Artificial (Random Forest) para análise integrada de métodos sorológicos e moleculares, no diagnóstico de novos casos de hanseníase e monitoramento de contatos domiciliares por um período de cinco anos. O estudo foi desenvolvido em Governador Valadares – MG, considerada área endêmica de hanseníase. O desenho proposto é do tipo longitudinal, com coleta de dados cadastrais de todos os casos diagnosticados em 2011 e seus respectivos contatos domiciliares registrados no período de 2011, 2012 e 2016. Um total de 196 indivíduos, sendo 43 casos, 113 contatos domiciliares e 40 indivíduos considerados controles endêmicos que relataram não ter convívio com pacientes com hanseníase nem tão pouco histórico de hanseníase na família foi incluído no estudo. Foram coletadas amostras sangue e de raspado intradérmico dos casos de hanseníase e seus respectivos contatos domiciliares, para análise por qPCR (16S rRNA) e ELISA (anti NO-OLID e LID-1). A análise integrada dos dados foi realizada por meio da Random Forest com o objetivo de melhorar o desempenho dos testes para o diagnóstico de hanseníase. Isoladamente, a qPCR apresentou sensibilidade de 48,8% e especificidade de 100% no diagnóstico de casos de hanseníase. No ensaio de ELISA anti-ND-O-LID a sensibilidade alcançada foi de 57,9% e especificidade de 97,5%, enquanto que no ensaio de anti-LID-1, a sensibilidade e especificidade foram de 63,2% e 92,5%, respectivamente. Entretanto, a análise integrada dos dados por Random Forest, utilizando 10.000 árvores de decisão, com um erro modal de 12,8%, obteve-se uma taxa de sensibilidade de 81,6% e especificidade de 92,5% na predição de novos casos de hanseníase. O modelo de Random Forest foi utilizado para o monitoramento de contatos domiciliares no período de 05 anos. Esta ferramenta de análise identificou entre os contatos, 02 doentes, mesmo antes do diagnóstico clínico. Ao final do período de acompanhamento, 03 contatos domiciliares foram notificados como casos novos de hanseníase. Desta forma, o modelo proposto pela análise Random Forest permitiu diagnosticar casos de hanseníase com alta sensibilidade e especificidade e identificar precocemente novos casos entre os contatos domiciliares durante o monitoramento.