Uma abordagem numérica para problemas de otimização no Ensino Médio

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Carmo, Angelo Pereira do lattes
Orientador(a): Mazorche, Sandro Rodrigues lattes
Banca de defesa: Casagrande, Rogério lattes, Veloso, Marcelo Oliveira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Mestrado Profissional em Matemática (PROFMAT)
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/2372
Resumo: Este trabalho visa discutir métodos para se determinar pontos extremos de funções de uma variável real. Ele procura estender o número de problemas de otimização que conseguimos solucionar no ensino básico para além daqueles modelados por funções quadráticas. Para isso fazemos uso de "Métodos Numéricos". No capítulo 1 falamos sobre o cálculo de extremos de funções quadráticas. Tecemos alguns comentários sobre a forma com que se ensina essa parte da matemática no ensino médio e mostramos um procedimento interessante para encontrar extremos da função quadrática. Este procedimento baseia-se na observação de que a abscissa do ponto extremo não se altera ao se fazer um tipo de translação da parábola. No capítulo 2 enfatizamos resultados clássicos da teoria de otimização de funções reais. Estes resultados são normalmente abordados em cursos de cálculo e servem, tanto para garantir a existência de extremos de funções contínuas em intervalos fechados quanto para se determinar este valor. Os resultados são demonstrados do ponto de vista do Cálculo Diferencial e Integral de uma variável real. No capítulo 3 abordamos dois métodos numéricos simples que podem ser usados no ensino médio sem maiores problemas. A utilização destes métodos neste trabalho está fortemente relacionada com o fato das funções abordadas em problemas de otimização serem (em geral) contínuas e unimodais no intervalo onde o problema faz sentido. No capítulo 4 propomos três problemas sobre otimização onde as funções envolvidas não são quadráticas. Neste momento queremos mostrar a força dos métodos numéricos introduzidos no capítulo 3 na solução destes problemas. Em particular, optamos pelo "Método da Seção Áurea" para ser aplicado nestes problemas por acreditar que a assimilação deste método seja mais rápida por parte dos alunos do que o método da "Bisseção". Por m, acreditamos que a implementação do "Método da Seção Áurea" numa planilha eletrônica trás agilidade ao processo e motiva os alunos a aprenderem sobre este tipo de recurso computacional tão importante nos dias de hoje.