Método perturbativo aplicado a gravidade de quarta ordem e a relatividade geral corrigida pelo grupo de renormalização

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Mauro Filho, Sebastião lattes
Orientador(a): Shapiro, Ilya lattes
Banca de defesa: Ramos, Rudnei de Oliveira lattes, Gonçalves, Bruno lattes, Peixoto, Guilherme de Berredo lattes, Oliveira Neto, Gil de lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Física
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/5526
Resumo: Nesta tese aplicamos o método perturbativo, em nível clássico, à Gravidade de Quarta Ordem e à Relatividade Geral estendida pelo Grupo de Renormalização (RGGR). Para explorar as perturbações métricas, na teoria da Gravidade de Quarta Ordem, nós usamos a formulação de campos auxiliares para uma métrica de fundo curva e arbitrária. O caso em que a métrica de fundo é Ricci-plano foi elaborada em detalhes. Notamos que o uso de campos auxiliares tornará a análise perturbativa mais simples e os resultados mais claros. Como uma aplicação, nós reconsideramos os resultados para a estabilidade do buraco negro de Schwarzschild e discutimos alguns avanços para o buraco negro de Kerr na Gravidade de Quarta Ordem. Nós também usamos o método perturbativo para explorar os limites newtoniano e pós-newtoniano de RGGR. No Sistema Solar, RGGR depende de um único parâmetro adimensional /9, e ele é tal que para /9 = 0 a Relatividade Geral é obtida. Para estudar o limite newtoniano fizemos uso da técnica de transformação conforme e da dinâmica do vetor de Laplace-Runge-Lenz (LRL). Isso nos permitiu estimar o limite superior de P dentro do Sistema Solar em dois casos: um quando é levado em conta o efeito de potencial externo e outro quando ele não é considerado. Anteriormente, foi encontrado que este parâmetro satisfaz o seguinte limite /9 < 10-21, quando o efeito de potencial externo é ignorado. Entretanto, como nós mostramos esse limite cresce cinco ordens de magnitude P < 10-16 quando tal efeito é considerado. Além disso, mostramos que para um certo limite, RGGR pode ser facilmente testada usando o formalismo parametrizado pós-newtoniano (PPN).