Aplicação de espectroscopia no infravermelho próximo (NIR) e médio (MIR) associada a métodos quimiométricos, para avaliação de parâmetros físico-químicos em frações de petróleo

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Rocha, Julia Tristão do Carmo lattes
Orientador(a): Oliveira, Marcone Augusto Leal de lattes
Banca de defesa: Sena, Marcelo Martins de lattes, Souza, André Marcelo de lattes, Lowinsohn, Denise lattes, Andrade, Gustavo Fernandes Souza lattes
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Química
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
MIR
NIR
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4410
Resumo: Os produtos petrolíferos em geral são altamente complexos e é exigido um esforço considerável para a caracterização de suas propriedades químicas e físicas. Às vezes tem-se urgência no resultado de determinadas análises e isto fica prejudicado pela forma como as análises são feitas. Assim, a quimiometria, associada à espectroscopia molecular (NIR e MIR em particular) vem gerando métodos alternativos para a caracterização e avaliação de propriedades físicas e químicas de petróleos e seus derivados com elevada exatidão, confiabilidade e rapidez. Para melhorar o desempenho previsor têm sido utilizados procedimentos apropriados para a seleção das regiões espectrais associadas com a propriedade de interesse. Desta forma, face às suas aplicabilidades, foi proposto neste trabalho a utilização das ferramentas quimiométricas com seleção de variáveis (método dos mínimos quadrados parciais por intervalos, iPLS, e por sinergismo de intervalos, siPLS; método de eliminação de variáveis não informativas por mínimos quadrados parciais, UVE; e algoritmo genético, GA), associada ao MIR e ao NIR, para a determinação das seguintes propriedades em frações de petróleo: Grau API, Índice de cetano, Índice de refração (a 20°C), Teor de Enxofre (%m/m), Ponto de fuligem (mm), Ponto de anilina (°C), Ponto de congelamento (°C), Ponto de entupimento (°C), Ponto de névoa (°C) e Ponto de fluidez (°C), avaliando, assim, a performance dos modelos obtidos, bem como as técnicas utilizadas na seleção de variáveis. Essa avaliação se deu pela determinação e análise do coeficiente de determinação (R2), de diversos erros calculados para os conjuntos de calibração e previsão. Os modelos foram, ainda, submetidos a testes estatísticos (α=0,05), e tiveram suas figuras de mérito calculadas. Os melhores modelos para a previsão do Grau API e do ponto de névoa foram criados aplicando-se iPLS a dados de MIR, enquanto que para a previsão do teor de enxofre e pontos de refração, de fuligem e de anilina foram criados aplicando-se siPLS também ao MIR. Já para a previsão do índice de cetano e do teor de enxofre e do ponto de entupimento, os melhores modelos foram criados aplicando-se iPLS a dados de NIR. Nesse contexto, o melhor modelo para a predição do ponto de fluidez foi o GA. Finalmente, para a previsão do ponto de congelamento, nenhum método de seleção de variáveis melhorou a capacidade preditiva, quando comparados ao modelo criado aplicando-se PLS a dados de MIR. Dessa forma, conclui-se que houve um melhor desempenho dos modelos criados a partir de dados de MIR. Quanto aos métodos de seleção de variáveis, iPLS e siPLS obtiveram o melhor desempenho.