Aprendizado de máquina com variáveis categóricas para previsão de vazão em bacias hidrográficas de Minas Gerais

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Soares Filho, Welson de Avelar lattes
Orientador(a): Fonseca, Leonardo Goliatt da lattes
Banca de defesa: Justino, Eliane Aparecida lattes, Ribeiro, Celso Bandeira de Melo lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Programa de Pós-graduação em Modelagem Computacional
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/18200
Resumo: A gestão sustentável dos recursos hídricos é essencial diante das mudanças climáticas e seus impactos nos sistemas humanos e naturais. Neste cenário, os modelos computacionais têm ajudado no processo de tomadas de decisões, entretanto, frente às limitações dos modelos físicos tradicionais, que frequentemente demandam dados extensivos e complexos processos de calibração, torna-se possível questionar: até que ponto modelos baseados em aprendizado de máquina podem oferecer previsões robustas e aplicáveis para a gestão hídrica em cenários caracterizados por alta variabilidade? Este estudo explora a aplicação de modelos de aprendizado de máquina, incluindo Regressão Linear, CatBoost e Random Forest, para previsão de vazão em bacias hidrográficas de Minas Gerais, Brasil. Por meio da análise das relações complexas entre precipitação e fluxo dos rios, esta pesquisa busca melhorar a precisão das previsões aplicando determinadas variáveis categóricas, abordando desafios como a assimetria dos dados e o efeito de “cauda longa”. Os resultados destacam o potencial do aprendizado de máquina como uma solução eficiente e economicamente viável, com especial destaque à Regressão Linear, oferecendo percepções valiosas para a gestão de recursos hídricos e o planejamento de políticas públicas. Além disso, o estudo contribui para a literatura científica ao preencher uma lacuna de conhecimento sobre o uso de técnicas de aprendizado de máquina nesse contexto regional.