Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Araújo, Hygor Xavier
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Orientador(a): |
Villela, Saulo Moraes
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Borges, Carlos Cristiano Hasenclever
,
Leite, Saul de Castro
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Juiz de Fora (UFJF)
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação
|
Departamento: |
ICE – Instituto de Ciências Exatas
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufjf.br/jspui/handle/ufjf/11434
|
Resumo: |
Para a solução do problema de classificação através da inferência transdutiva, é necessário encontrar os rótulos de um conjunto previamente definido. No entanto, calcular a melhor rotulação dessas amostras é um problema combinatorial NP-difícil. Neste trabalho, um método que combina os métodos de busca branch-and-bound e best-first é proposto para resolver o problema de rotulação buscando pela solução ótima. Para orientar a busca, foram usados classificadores baseados em margem, como a Máquina de Vetores Suporte (Support Vector Machine – SVM), e uma função de avaliação monótona com base nos valores de margem deste classificador, o que leva á solução globalmente ótima. Para lidar com o alto custo computacional da solução de máxima margem, também foi proposta uma solução heurística que é usada como um limite inferior sendo computado em tempo constante através da solução de um problema de classificação com o SVM. Comparando o método proposto com a Máquina de Vetores Suporte Transdutiva (Transductive Support Vector Machine – TSVM), os resultados mostraram melhorias significativas no tempo de execução e valores superiores de margem. Além disso, duas novas heurísticas são apresentadas para reduzir o número de estados explorados e acelerar a exploração do espaço de busca. O método e suas heurísticas são avaliados e comparados ao SVM e ao TSVM, mostrando resultados competitivos. |