Estudo de geração fotovoltaica distribuída: análise econômica e o uso de redes neurais artificiais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Alves, Ricardo Henrique Fonseca lattes
Orientador(a): Lemos, Rodrigo Pinto lattes
Banca de defesa: Lemos, Rodrigo Pinto, Deus Júnior, Getúlio Antero de, Cerqueira, Jês de Jesus Fiais, Castro, Marcelo Stehling de
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
Departamento: Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/7563
Resumo: The main goal of this work is to propose a methodology for the selection of 51 consumers in Nova Veneza-GO connected to two transformers in the pre-Smart Grid network. The methodology consists of ten stages ranging from the grouping of consumers with the same power consumption profile using a neural network, that is, a Non Parametric Self-Organizing Map (PSOM), until the complete and optimal allocation of financial resources through of an Integer Linear Programming. We obtained 12 different groups (clusters) of consumers of the two transformers with the same power consumption profile using the network PSOM algorithm. This grouping (clustering) was considered in the dimensioning and design of Photovoltaic Systems Connected to the Grid (Grid-Tie Systems) using three different computational tools, among them, an approach based on the PVSyst software, trial version V6.39. In addition, a study of Economic Engineering was carried out to expand the R&D pilot project aiming at the implementation of Grid Tie Systems for all the consumers of Nova Veneza-GO and Goiânia-GO, considering consumption data available by Celg-D and also considering two different scenarios based on the implementation of photovoltaic systems with and without government incentive. An Economic Engineering analysis was performed considering that 1%, 5%, 10%, 20%, 30% and 100% of Consumer Units (UC) adhere to the implantation of solar systems in Goiânia-GO. Environmental results were found for the city of Nova Veneza-GO and Goiânia-GO, evidencing an expressive reduction in CO2 emissions and a great saving of water.