O número envoltório P3 e o número envoltório geodético em produtos de grafos

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Nascimento, Julliano Rosa lattes
Orientador(a): Coelho, Erika Morais Martins lattes
Banca de defesa: Coelho, Erika Morais Martins lattes, Szwarcfiter, Jayme Luiz lattes, Centeno, Carmen Cecilia, Dias, Elisângela Silva
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/6583
Resumo: In this work, we consider the parameter hull number in two graph convexities, the P3- convexity and the geodetic convexity. In the P3-convexity, we present results on the P3- hull number on the Cartesian product, strong product and lexicographic product of graphs. In special, regarding to the Cartesian product, we proved a complexity result, in which we show, given a graph G resulting of a Cartesian product of two graphs and a positive integer k, is NP-complete to decide whether the P3-hull number of G is less than or equal k. We also consider the P3-hull number on complementary prisms GG of connected graphs G and G, in which we show a tighter upper bound than that found in the literature. In the geodetic convexity, we show results of the hull number on complementary prisms GG when G is a tree, when G is a disconnected graph and when G is a cograph. Finally, we also show that in the geodetic convexity, the hull number on the complementary prism GG is unlimited on connected graphs G and G, unlike what happens in the P3-convexity