Descoberta automatizada de associações com o uso de algoritmo Apriori como técnica de mineração de dados

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: ALMEIDA, Derciley Cunha de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Engenharia
BR
UFG
Mestrado em Engenharia Elétrica e de Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tde/966
Resumo: Atualmente é possível o armazenamento e o gerenciamento de grandes quantidades de dados, através de modernos sistemas informatizados. Por outro lado, a análise completa e a extração do máximo de informações desse universo de dados disponíveis passaram a ser um grande desafio, diante das limitações próprias de um ser humano. Essa dissertação aborda o tema mineração de dados, também muito conhecido pelo termo em inglês data mining. Trata-se da extração de informações de bases de dados de forma automatizada, com o uso de recursos tecnológicos. Uma das possibilidades que as tecnologias de data mining oferecem é a busca automatizada de possíveis associações existentes entre dados. As informações sobre associações entre dados podem ser muito úteis para se compreender possíveis relações de causa e efeito entre muitas variáveis envolvidas em estudos e análises de dados para tomada de decisões. Há várias técnicas de mineração de dados e muitas podem ser utilizadas para descoberta de associações. O principal objetivo deste trabalho é estudar mais especificamente o método de busca automatizada de associações conhecido como Apriori de forma a avaliar sua sistemática, capacidade e resultados. O estudo é direcionado por um problema que está relacionado à busca pelo aprimoramento dos resultados gerados pelo algoritmo Apriori sob a premissa de que uma preparação de dados específica e direcionada para o uso do algoritmo pode aprimorar os resultados do processo de mineração de dados. As conclusões são extraídas de um estudo de caso sobre a aplicação do algoritmo Apriori em uma base de dados com informações sobre fornecimento de medicamentos de uma unidade de saúde. São avaliados e comparados os resultados de três experimentos para se verificar a influência de uma preparação de dados no desempenho do algoritmo. Ficou evidenciado que o algoritmo Apriori alcança resultados satisfatórios na tarefa de busca por associações entre dados, no entanto, é recomendável uma preparação específica desses dados para que a aplicação do algoritmo alcance melhores resultados ou muitas associações existentes podem não ser encontradas.