Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Lopes, Victor Hugo Lázaro
 |
Orientador(a): |
Cardoso, Kleber Vieira
 |
Banca de defesa: |
Cardoso, Kleber Vieira,
Klatau Júnior, Aldebaro Barreto da Rocha,
Rocha, Flávio Geraldo Coelho,
Silva, Yuri Carvalho Barbosa,
Rezende, José Ferreira de |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RMG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/13476
|
Resumo: |
5G and beyond networks have been designed to support challenging services. Despite important advances already introduced, resource allocation and management methods remain critical tasks in this context. Although resource allocation methods based on exact optimization have a long history in wireless networks, several aspects involved in this evolution require approaches that can overcome the existing limitations. Recent research has shown the potential of AI/ML-based resource allocation methods. In this approach, resource allocation strategies can be built based on learning, in which the complex relationships of these problems can be learned through the experience of agents interacting with the environment. In this context, this thesis aimed to investigate AI/MLbased approaches for the development of dynamic resource allocation and management methods. Two relevant problems were considered, the rst one related to user scheduling and the allocation of radio resources in multiband MIMO networks, and the second one focused on the challenges of allocating radio, computational, and infrastructure resources involved in the VNF placement problem in disaggregated vRAN. For the rst problem, an agent based on DRL was proposed. For the second problem, two approaches were proposed, the rst one being based on an exact optimization method for dening the VNF placement solution, and the second one based on a DRL agent for the same purpose. Moreover, components adhering to the O-RAN architecture were proposed, creating the necessary control for monitoring and dening new placement solutions dynamically, considering aspects of cell coverage and demand. Simulations demonstrated the feasibility of the proposals, with important improvements observed in different metrics. |