Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Naves, Emílio Santiago
 |
Orientador(a): |
Castro, Marcos Antônio de
 |
Banca de defesa: |
Fileti, Thaciana Valentina Malaspina Fileti
,
Silva Filho, Demétrio Antônio da
,
Georg, Herbert de Castro
,
Braghin, Fabio Luis
 |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Fisica (IF)
|
Departamento: |
Instituto de Física - IF (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/3078
|
Resumo: |
This work presents results for the dynamic (hyper)polarizabilities of ozone, sulfur dioxide, nitrous oxide and carbon dioxide molecules, with inclusion of vibrational corrections. The electronic contributions for the properties of interest were computed analytically at the single and double coupled cluster level through response theory. Ozone and sulfur dioxide were studied separately. For both systems, contributions of connected triple excitations were also estimated by the multiplicative correction scheme. The vibrational corrections were calculated by the perturbation theoretical method (PT). The zero-point vibrational average correction, calculated only for ozone and sulfur dioxide, proved to be small. Results also show that the pure vibrational correction is relevant for the following nonlinear optical processes: dc-Pockels effect, intensity dependent refractive index, and dc-Kerr effect. For the ozone molecule the dc-second harmonic generation effect also had a significant pure vibrational correction. In addition, pure vibrational correction was calculated according to a variational methodology proposed by our research group (VAR) for the four systems, and the results were compared with the corresponding PT results. A comparison between PT and VAR results shows that ozone is the system most sensitive to the method, while sulfur dioxide and carbon dioxide are the most well behaved. |