Contribuição ao estudo do comportamento mecânico do concreto utilizando diferentes modelagens em elementos finitos na escala mesoscópica

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Quaresma, Wanessa Mesquita Godoi lattes
Orientador(a): Pituba, José Julio de Cerqueira lattes
Banca de defesa: Pituba, José Julio de Cerqueira, Araújo, Daniel de Lima, Fernandes, Gabriela Rezende
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Geotecnia, Estruturas e Construção Civil (EEC)
Departamento: Escola de Engenharia Civil - EEC (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/6796
Resumo: This work deals with the study of the concrete mechanical behavior using a two-dimensional numerical modeling in mesoscopic scale. The material is considered to be composed of three phases consisting of the interface zone matrix and inclusions, where each constituent is modeled properly. In the representative volume element (RVE) inclusions of as various shapes and randomly arranged are considered. The interface zone is modeled by finite elements where a model of fracture and contact recently proposed is incorporated. On the other hand, the transition zone is modeled by triangular finite elements where the Mohr-Coulomb model with lower strength characteristics compared to the mortar, is used. Inclusion is modeled as a linear elastic material and the matrix is considered as elastoplastic materials governed by the Mohr-Coulomb model. Our main goal is to show that a formulation based on computational homogenization is an alternative to complex macroscopic constitutive models for the mechanical behavior of brittle materials using a procedure based on the Finite Element Method and a multiscale theory. Examples changing the form of aggregate, their volume fraction and distribution in RVE, as well as various strategies for modeling the transition zone are shown to illustrate the performance of the proposed model. The results evidence that the proposed modeling leads to are promising results for employment in a multiscale modeling. Also, this work shows the importance of parametric identification of fracture and contact model in the microstructural analysis of concrete.