Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Santana , Douglas Rolins de
 |
Orientador(a): |
Ribeiro, Leonardo Andrade
 |
Banca de defesa: |
Ribeiro, Leonardo Andrade,
Bedo, Marcos Vinicius Naves,
Martins, Wellington Santos |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/13058
|
Resumo: |
Similarity Join is an operation that returns pairs of objects whose similarity is greater than or equal to a specified threshold, and is essential for tasks such as cleaning, mining, and data integration. A common approach is to use data vector representations, such as the TFIDF method, and measure the similarity between vectors using the cosine function. However, computing the similarity for all pairs of vectors can be computationally prohibitive on large data sets. Traditional algorithms exploit the sparsity of vectors and apply filters to reduce the comparison space. Recently, advances in natural language processing have produced in semantically richer vectors, improving the results quality. However, these vectors have different characteristics from those generated by traditional methods, being dense and of high dimensionality. Preliminary experiments demonstrated that L2AP, the best known algorithm for similarity join, is not efficient for dense vector spaces. Due to the intrinsic characteristics of such vectors, approximate solutions based on specialized indices are predominant for dealing with large datasets. In this context, we investigate how to perform similarity joins using the Hierarchical Navigable Small World (HNSW), a state-of-the-art graph-based index designed for approximate k-nearest neighbor (kNN) queries. We explored the design space of possible solutions, ranging from top-end alternatives to HNSW to deeper integration of similarity join processing into this framework. The experiments carried out demonstrated accelerations of up to 2.48 and 3.47 orders of magnitude in relation to the exact method and the baseline approach, respectively, maintaining recovery rates close to 100%. |