Desenvolvimento de sensores colorimétricos e eletroquímicos para aplicações clínicas e forenses

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Garcia, Paulo de Tarso lattes
Orientador(a): Coltro, Wendell Karlos Tomazelli lattes
Banca de defesa: Coltro, Wendell Karlos Tomazelli, Arruda, Marco Aurélio Zezzi, Ulhôa, Cirano José, Silva, Rhonan Ferreira da, Colmati Júnior, Flávio
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Química (IQ)
Departamento: Instituto de Química - IQ (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/8180
Resumo: This study describes the development of low cost colorimetric and electrochemical sensors aiming clinical and forensic applications. Firstly, a microfluidic paper-based analytical device (μPAD) was developed as colorimetric sensor for rapid estimation of post-mortem interval (PMI) on the crime scene using human vitreous-humour (VH) samples. Experimental parameters were optimized and the best conditions were: paper 1 CHR, 5 mm microzone diameter, 4 μL sample volume and 0.05 mol/L chromogen concentration. μPADs were coupled to colorimetric detection and the feasibility was demonstrated by Fe2+ determination in VH samples, in which the data were not statistically different from conventional technique (ICP-MS). It is important to highlight that Fe2+ levels were proportional to PMI. A color scale was also developed to help the forensic teams in order to estimate the PMI with a simple, quick and visual way. For electrochemical sensors, two different sensors were proposed to determine salivary α-amylase (sAA) levels in human saliva samples, aiming help in the diagnostic of pancreatitis and periodontitis. The first sensor based in a carbon screen-printed electrode (SPE) associated to amperometric detection. Experimental parameters were optimized and the best conditions were: 5 mmol L-1 NaOH (pH= 12), 20 min reaction time, 15 μL sAA volume and 0.5% (w/v) starch concentration. The feasibility of the sensor was demonstrated by sAA determination in five saliva samples (two from male donators and three from female individuals). The sAA concentrations ranged between 182.1 e 1117.1 U mL-1; once two female samples presented high sAA levels because the use of oral contraceptive. The other proposed electrochemical sensor was based in a Batch Injection Analysis with Amperometric Detection (BIA-AD) system using copper oxide (CuO) as working electrode (WE). Through experimental optimization was selected the potential that generate the best current signal. The WE obtained by a chemical/thermal treatment present good stability, once the relative standard deviation (RSD) value was 0.3%, which is ca. 75 fold lower than the RSD obtained with the electrochemical procedure to generate CuO in the electrode surface. The feasibility of the sensor was demonstrated by sAA determination in four human saliva samples. Was possible distinguish patients with and without periodontitis, obtaining thus a quick information about periodontal state of the patients. In general, the three proposed sensors in this study offered good precision, accuracy and specificity. Furthermore, the sensors are simple, portables, low cost and not requires none sophisticate instrumentation. Therefore, they present as promising alternatives to be used in point-of-care clinical and forensic analysis.