Reconhecimento de postes da rede elétrica em vias urbanas em imagens do Google Street View

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Lopes, Allan Kardec lattes
Orientador(a): Soares, Fabrizzio Alphonsus Alves de Melo Nunes lattes
Banca de defesa: Soares, Fabrizzio Alphonsus Alves de Melo Nunes, Fleury, Cláudio Afonso, Costa, Ronaldo Martins da
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Cor
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/6612
Resumo: Urban environments, such as streets, roads and buildings, always require management and maintenance to better use. In this sense, computational tools to assist their managers are always desirable. Furthermore, these tools generally decrease spending in order to automate several tasks. This research presents an approach to recognition of pole utility in streets mapped by images from Google Street View. Features such as color, texture and shape were examined in order to find the best set of information that represents the objects of interest. The recognition was performed by a neural network type Multilayer Perceptron trained with the Levenberg-Marquardt algorithm. The results show a higher accuracy in recognition when used in combination, mode RGB and texture properties as features to represent the structures present in the images.