Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Lopes, Allan Kardec
 |
Orientador(a): |
Soares, Fabrizzio Alphonsus Alves de Melo Nunes
 |
Banca de defesa: |
Soares, Fabrizzio Alphonsus Alves de Melo Nunes,
Fleury, Cláudio Afonso,
Costa, Ronaldo Martins da |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/6612
|
Resumo: |
Urban environments, such as streets, roads and buildings, always require management and maintenance to better use. In this sense, computational tools to assist their managers are always desirable. Furthermore, these tools generally decrease spending in order to automate several tasks. This research presents an approach to recognition of pole utility in streets mapped by images from Google Street View. Features such as color, texture and shape were examined in order to find the best set of information that represents the objects of interest. The recognition was performed by a neural network type Multilayer Perceptron trained with the Levenberg-Marquardt algorithm. The results show a higher accuracy in recognition when used in combination, mode RGB and texture properties as features to represent the structures present in the images. |