Aplicação da inteligência artificial, ontologia e mineração de dados para classificação de sentenças judiciais

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Castro Junior, Antonio Pires de lattes
Orientador(a): Calixto, Wesley Pacheco lattes
Banca de defesa: Peretta, Igor Santos, Araújo, Wanderson Rainer Hilário de, Soares, Fabrizzio Alphonsus Alves de Melo Nunes, Gomes, Viviane Margarida, Calixto, Wesley Pacheco
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
Departamento: Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/12005
Resumo: The objective of this work is to apply together ontology with bag-of-words models, similarity learning, and document classification in texts with uttered decisions. The objective is to improve the results of data mining in a database of court decisions. An automatic method of searching sentences in judicial processes related to the one under judgment is developed using the frequency term-inverse of frequency in documents model together with the Jaccard similarity coefficient, establishing weights on the co-occurrence of terms in legal texts of the same category. A dataset with document vectorization is used for supervised training of machine learning algorithms, aiming to classify new justice processes. The proposed methodology provides flexibility to the Judiciary, simulating the role of legal advisors in preparing court decisions with less time and efficiency in the search for jurisprudential standards. The results obtained show that, through accuracy metrics, the proposed model is effective and efficient, and can be applied in the process of identification of court decisions. Thus, the application of artificial intelligence, ontology, and data mining is indicated for information retrieval in court decisions.