A curvatura Gaussiana via ângulo de contato de superfícies imersas em S3

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Argote, Fernando Arnulfo Zuñiga lattes
Orientador(a): Corro, Armando Mauro Vasquez lattes
Banca de defesa: Corro, Armando Mauro Vasquez, Santos, João Paulo dos, Pieterzack, Maurício Donizetti
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/4550
Resumo: In this work we refer to the study of a geometric invariant surfaces immersed in Euclidean 3-dimensional sphere S3. Such invariant, known as angle contact, is the complementary angle between the distribution of contact d and the tangent space of the surface. Montes and Verderesi [22] characterized the minimal surfaces in S3 with constant contact angle and Almeida, Brazil and Montes [4] studied some properties of immersed constant mean curvature into a round sphere S3 with constant contact angle. The our aim of this work is to deduce a general formula involving the Gaussian curvature, the mean curvature and the contact angle of surfaces immersed in Euclidean sphere 3-dimensional, which shows that the surface is flat if the contact angle is constant. Moreover, we deduce that the Clifford tori are the unique compact surfaces with constant mean curvature having such propriety. Keywords