Caracterização estrutural e magnética do compósito cerâmico ZnO – CoFe2O4

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Oliveira Neto, Francisco de lattes
Orientador(a): Franco Júnior, Adolfo lattes
Banca de defesa: Franco Júnior, Adolfo, Araújo, Olacir Alves, Bufaiçal, Leandro Felix de Sousa
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Fisica (IF)
Departamento: Instituto de Física - IF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/5228
Resumo: Multiferroic materials that simultaneously exhibit two or more physical properties have increasingly raised the interest of the scientific and technological community to develop new multifunctional materials. The discuss all stages of manufacturing, morphological, structural and magnetic characterization of a multifunctional composite containing zinc oxide and cobalt ferrite. Thus, studies of ZnO, and the CoFe2O4 composite (0,80ZnO+0,20 CoFe2O4) initiated by the synthesis of nanosized powders by combustion reaction phases were performed. The compounds studied were sintered at different temperatures (1100 to 1250°C) to obtain relative density near to 90% of the theoretical density. Analysis by scanning electron microscopy, spectroscopy energy dispersive, vibrating sample magnometry and diffraction ray-X were made. Measurements of magnetic properties were conducted at room temperature (22°C) and high temperature (22°C to 700°C). In the samples, formation of ceramic structures was verified, the stoichiometry of the proposed chemical compounds was maintained and possibly the formation of a mixed zinc and cobalt ferrite to composite samples. In the sample of the composite sintered at 1250°C there was the formation of cubic zinc oxide. The magnetic behavior and magnetic anisotropy of the samples were similar, however, significant differences were observed in the values of the Curie temperature, coercive field, can assume different origins for the magnetic CoFe2O4 and the composite (0,80ZnO+0,20CoFe2O4) due, perhaps to the formation of a mixed ferrite.