Instabilidade dinâmica de cascas cilíndricas laminadas submetidas a fluido e temperatura

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Martins, Vitor Escher lattes
Orientador(a): Prado, Zenón José Guszmán Núñez del lattes
Banca de defesa: Prado, Zenón José Guszmán Núñez del, Silva, Frederico Martins Alves da, Brito, José Luiz Vital de
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Geotecnia, Estruturas e Construção Civil (EEC)
Departamento: Escola de Engenharia Civil - EEC (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/4373
Resumo: Over the years, fiber-reinforced composite laminated shells have been widely used as structural components in several engineering areas and industrial applications. These structures can been subjected to extreme working conditions, either by a fluid structure interaction or even by both dynamic external load and thermal load that provides additional compressive stresses acting along the shell. In the present work, the nonlinear dynamic behavior and stability of fluid-filled laminated cylindrical shells under both thermal and lateral loads is investigated. To model the shell the nonlinear Amabili-Reddy Higher-Order Shear Deformation Theory is applied, the hydrodynamic pressure of the fluid is model by the potential flow theory and a linear temperature distribution is proposed along the thickness of the shells. Classical shells theories, which neglect shear deformation and rotary inertia, give inaccurate analysis results for moderately thick laminated shells. Due to this limitation, higher-order shear deformation theories can represent better the kinematics behavior and can yield more accurate interlaminar stress.To discretize the shell a 23 d.o.f. displacement field is used containing the axial, circumferential, lateral displacements, rotations as well as the coefficients to consider the shear effect. The Ritz method is applied in order to obtain a set of nonlinear ordinary differential equations of motions, which are in turn solved by the Runge-Kutta method. The obtained resonance curves and bifurcation diagrams show the great influence of both laminated material and the temperature on the nonlinear behavior of the shells.