Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Maione, Camila
 |
Orientador(a): |
Barbosa, Rommel Melgaço
 |
Banca de defesa: |
Barbosa, Rommel Melgaço,
Noronha, Adriana Backx,
Leitão Júnior, Plínio de Sá |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/5715
|
Resumo: |
A practical way to characterize consumable substances is through its chemical elements in its composition and theirs concentrations. By using these elements as feature variables, it is possible to arrange these substances samples in a data matrix in which data mining and statistical techniques can be applied for predictive analysis. The classification of consumable substances based on its chemical components is an interesting problem and provides useful information for various purposes, as: recognition of geographical origin of a substance; validation and authenticity; determination of the characteristics of a product which can aid companies in the quality control and preservation; differentiation of categories of a product, and others. This study presents a methodology for predictive analysis of substances and food based on its chemical components, using data mining concepts and techniques allied to ICPMS. Four applications of the proposed methodology are described: recognition of the geographical origin of Brazilian white rice produced in São Paulo and Goiás states; differentiation of organic and conventional Brazilian grape juice; differentiation of organic and conventional Brazilian chocolate, and analysis of its toxic and essential elements; recognition of the source of ecstasy tablets apprehended in two cities from Sao Paulo state, Ribeirão Preto and Campinas. For all applications presented, the classification models obtained showed high predictive performance (over 85%), which attest the efficiency of the proposed methodology, and the variable selection techniques used helped us to identify the chemical elements which are more important to the differentiation of the analyzed samples. For the purpose of distinguishing food samples into organic and conventional, our approach is pioneer and yielded good results. |