Adaptabilidade temática em sistemas tutores inteligentes híbridos

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: QUINDERÉ, Pedro Sérgio Gomes lattes
Orientador(a): MARTINS, Weber lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Mestrado em Engenharia Elétrica e de Computação
Departamento: Engenharia
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tde/976
Resumo: In the context of efficient information transmission among people and, particularly in the helping of learning and training processes, this investigation presents results on the use of the technology of Hybrid Intelligent Tutoring Systems, based on artificial neural networks and expert rules, developed by Martins [MEA 2004], Melo [MEL 2003] and Meireles [MEI 2003]. Due to the fact that, in its initial empirical validation, neural training data has been originated from courseware in Introduction to Data Processing , some doubts have remained on the applicability of the trained neural network to other scenarios. The present production has approached these issues by the formalization of the content format and by presenting promising empirical results in two other scenarios: Scientific Methodology and Biological Rhythms . Results were analyzed by non-parametric methods with 5% significance. They reinforce the hypotheses that the studied tutoring system is efficient, able to reduce differences of distinct groups and shows thematic adaptability actually