Mineração de dados para o reconhecimento da origem e do tipo de alimentos e outras substâncias com base em sua composição química

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Maione, Camila
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Instituto de Informática - INF (RG)
Brasil
UFG
Programa de Pós-graduação em Ciência da Computação (INF)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/5715
Resumo: Uma maneira prática de caracterizar substâncias é através dos elementos químicos em sua composiçã. Utilizando estes elementos como variáveis descritoras, é possível organizarmos amostras de substâncias em uma matriz de dados para ser analisada por técnicas de mineração de dados e estatística. A classificação de substâncias baseada em sua composição química provê uma variedade de informações úteis para diversos propósitos, como reconhecimento da origem geográfica de uma determinada substância, verificação de autenticidade, identificar características de produtos que auxiliem empresas no controle de qualidade e preservação, diferenciação de categorias de produtos, entre outros. Este trabalho apresenta uma metodologia para análise preditiva de dados de substâncias e alimentos com base em sua composição química, utilizando técnicas de mineração de dados aliada a espectrometria de massa por plasma indutivamente acoplado (ICP-MS). Quatro aplicações diretas da metodologia são apresentadas: reconhecimento geográfico do arroz branco brasileiro produzido nos estados do Rio Grande do Sul e Goiás; classificação do suco de uva brasileiro em orgânico e convencional; diferenciação do chocolate brasileiro em orgânico e convencional e análise de seus elementos tóxicos e essenciais; reconhecimento da origem de tabletes de ecstasy entre duas cidades de apreensão do estado de São Paulo, Campinas e Ribeirão Preto. Em todas as aplicações, os modelos de classificação obtidos apresentaram alto desempenho de predição (superior a 85%), o que atesta a eficiência da metodologia proposta, e os algoritmos de seleção de variáveis utilizados ajudaram a identificar os elementos químicos mais importantes para a diferenciação das amostras. No âmbito de diferenciação de amostras de alimento entre orgânico e convencional, a nossa abordagem é pioneira e gerou bons resultados.