Uma caracterização da planaridade de uma família de funções binomiais sobre corpos finitos via curvas algébricas

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Chu, Daniel lattes
Orientador(a): Tenório, Wanderson lattes
Banca de defesa: Tenório, Wanderson, Tizziotti, Guilherme Chaud, Cunha, Gregory Duran
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/12326
Resumo: In this work, we study a family of binomial functions given by $$ f_{a,b}(x)=ax^{2^{2^m}+1}+bx^{2^m+1}, \quad \mbox{with } \ a,b\in\mathbb{F}_{q^3}^\times, $$ over a finite field of characteristic 2. The aim consists to show that is possible to relate the planarity of the family above to a cubic plane projective curve $\mathcal{C}_{a,b}$. From this method, it is possible establish a characterization of the pairs $(a,b)\in(\mathbb{F}_{q^3}^\times)^2$ such that the function $f_{a,b}(x)$ is planar.