Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Melo Júnior, Gilberto de
 |
Orientador(a): |
Vieira, Sílvio Leão
 |
Banca de defesa: |
Vieira, Sílvio Leão,
Alcala, Symone Gomes Soares,
Calixta, Wesley Pacheco |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
|
Departamento: |
Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/11277
|
Resumo: |
This work aims at the comprehensive study involving electro-oculographic signals, acquisition methodologies, digital filters and Machine Learning algorithms. The research methodology was divided into three major stages. The first stage aimed at developing an environment and methods for acquiring electro-oculographic signals. In the second stage, digital filters were applied to the acquired signals. In the third and last stage, the signal patterns were analyzed using Machine Learning algorithms responsible for the classification of electro-oculographic signals. As a result, accuracy in the classification of 76.596 \% was obtained with the Random Forest algorithm. |