Desenvolvimento e caracterização de nanopartículas poliméricas contendo itraconazol

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Lucena, Percília de Andradea lattes
Orientador(a): Lima, Eliana Martins lattes
Banca de defesa: Lima, Eliana Martins, Amaral, André Correa, Silva, Maria do Rosário Rodrigues
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciências Farmacêuticas (FF)
Departamento: Faculdade Farmácia - FF (RG)
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/3809
Resumo: Polymeric nanoparticles have been used as carriers of drugs that are able to increase the efficacy of many active ingredients. Among the nanocarriers include nanocapsules (NCs), which are vesicular structures containing oil inside surrounded by a polymer wall and nanospheres (NSs) that are impregnated with polymer matrices drug throughout its surface. These structures have many applications such as optimizing drug delivery and reducing the toxic potential of drugs. Itraconazole family of a drug Azole has a broad spectrum of action against fungi and has appropriate pharmacokinetic characteristics for a drug. Thus, this study aims to develope and characterize nanostructured systems containing Itraconazole. Polymeric nanoparticles were obtained by the nanoprecipitation technique, lyophilized, characterized, and evaluated physical-chemically incorporated into mucoadhesive topical formulation. Nanocapsules containing Itraconazole showed encapsulation efficiency rate of 99 ± 6.9%, a mean diameter of 190 ± 10.1 nm, PDI 0.1 ± 0:06 and zeta potential -15 ± 2.5 mV. The nanospheres exhibited rate of encapsulation efficiency of 97 ± 2.8%, mean diameter 120 ± 0.8 nm, 0.1 ± 0.01 PDI and zeta potential -10 ± 3.5 mV. Lyophilization was carried out with 10% trehalose + 10% sucrose, achieving satisfactory results. The drug release after 30 days at 37 °C was 99% for the NCs and 92% for the NEs. The mucoadhesive topical formulation has in its composition 60% Poloxamer 188, 20% polyethylene glycol 400 and 5mg nanostructured itraconazole were incorporated homogeneously. The results indicate that the formulation of Itraconazole in polymeric nanoparticles has potential for in vivo use in the topical treatment of fungal infections.