Um modelo analítico para estimar o consumo de energia de sistemas multi-camadas no nível de transação

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Ferreira, Alex Rabelo lattes
Orientador(a): Corrêa, Sand Luz lattes
Banca de defesa: Corrêa, Sand Luz lattes, Reis, Valéria Quadros dos lattes, Martins, Wellington Santos, Petrucci, Vinicius Tavares
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Ciência da Computação (INF)
Departamento: Instituto de Informática - INF (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tede/7352
Resumo: In large-scale data centers, power management techniques such as Dynamic Voltage/Frequency Scaling (DVFS), virtual machine consolidation, and power-capping mechanisms promise impressive energy savings compared to traditional resource management strategies. Most of these techniques rely on coarse-grained monitoring of the workload behavior to apply their optimizations. However, coarse-grained monitoring and black box observations are not satisfactory for predicting the behavior of bursty workloads such as those observed in enterprise, Web servers. In this work, we propose an analytical model to estimate the energy consumption of multi-tier Web Systems. Differently from previous works, our model captures the consumption pattern at the level of fine-grained transactions and for each tier of the system. In addition, our model is based only on CPU utilization and server architectural parameters, which can be easily obtained in today’s production environments. We demonstrate the effectiveness of our model in a real-world experimentation environment, based on the TPC-W benchmark. Results show that our model is able to estimate the energy consumption for a Web system with an average relative error of 6.5% in the worst-case scenario, whereas more complex models of the literature present errors within the same order of magnitude.