Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Caixeta, Rommell Guimarães
 |
Orientador(a): |
Bulcão Neto, Renato de Freitas
 |
Banca de defesa: |
Bulcão Neto, Renato de Freitas,
Soares, Anderson da Silva,
Laureano, Gustavo Teodoro,
Oliveira, Marco Antônio Assfalk de |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/6297
|
Resumo: |
The analysis of physiological variables of a patient can improve the death risk classification in Intensive Care Units(ICU) and help decision making and resource management. This work proposes a computational approach to death prediction through physiological variables analysis in ICU. Physiological variables that compounds time-series(e.g., blood pressure) are represented as Dependent Gaussian Processes(DGP). Variables that do not represent time-series (e.g., age) are used to cluster DGPs with Decision Trees. Classification is made according to a distance measure that combines Dynamic Time Warping and Kullback-Leibler divergence. The results of this approach are superior to other method already used, SAPS-I, on the considered test dataset.The results are similar to other computational methods published by the research community. The results comparing variations of the proposed method show that there is advatage in using the proposed clustering of DGPs. |