Estudo para melhoria na performance e eficiência de placas fotovoltaicas: através de um sistema combinado de inclinação e resfriamento

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Jurinic, Francesco
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Fronteira Sul
Brasil
Campus Cerro Largo
Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis
UFFS
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://rd.uffs.edu.br/handle/prefix/3612
Resumo: This work presents a methodology for generating solar energy through the photovoltaic system, detailing its components and showing its efficiency, one of the main reasons for reducing its efficiency is the high operating temperatures. The objectives are to analyze the influence of the inclination angles of a 150 W photovoltaic plate and to produce a continuous cooling system using water as a cooling fluid (providing cooling on the surface of the photovoltaic plate). The slopes used were: 8°, 22°, 28° and 36° (with the photovoltaic plate facing north), aiming to find the best corresponding monthly angle throughout the year. For the inclination variations, a mobile metallic structure was used, 1 meter away from the floor and installed on a lawn. For the cooling system, a submerged pump with a power of 34 W was used, which pumps the water from a 500-liter reservoir to the top of the plate and distributes it evenly over the entire surface, returning it without any waste to the reservoir. . The experiments were carried out from 9:00 am to 4:30 pm over several days, observing the solar incidence, during the months of June 2019 to January 2020. The optimum slope found varied according to each month, obtaining an average slope over the year of 28.5 °. In the cooling system it was possible to reduce an average of approximately 22° C in relation to a conventional photovoltaic plate system. With the reduction of the temperature, gains in the generated power of 28.33 Watts and an efficiency of 2.35 % were obtained. It is concluded that the continuous water cooling system with 28° inclination is efficient in reducing the temperature of the plates and, consequently, in increasing the efficiency and efficiency.