Um método de pós-processamento de regras de associação com base nas relações de dependência entre os atributos

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Burkle, Paula Yamada
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Programa de Pós-Graduação em Computação
Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://app.uff.br/riuff/handle/1/17895
Resumo: Data mining is a process that aims at knowledge discovery from within great extension databases. Although it has been increasingly adopted due to its good performance in several domains, in some cases the results that are generated may be too large or too complex. This is a problem that is specific to the Association Rules technique, which often generates an amount of rules that exceed the limit amount of rules that are humanly viable to manipulate. In this present paper we propose a new semantic pruning approach for association rules based on previous domain knowledge, which is represented by attribute inter-dependency relations. The proposed method is aimed at facilitating analysis and comprehension of the rules, by means of eliminating redundancy within the mined rules, and by selecting those that have greater impact for the user s needs. Among the main results of the present study is the proposal and implementation of the DMcut association rules pruning method. The experiments that were conducted on four public domain databases reveal the potential benefits of using the method.