Explorando a técnica de indexação de conjuntos candidatos na mineração de conjuntos freqüentes
Ano de defesa: | 2008 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Programa de Pós-Graduação em Computação
Computação |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://app.uff.br/riuff/handle/1/17808 |
Resumo: | During the last ten years, many algorithms have been proposed to mine frequent itemsets. In order to fairly evaluate their behavior, the IEEE/ICDM Workshop on Frequent Itemset Mining Implementations (FIMI03) has been recently organized. According to its analysis, kDCI++ is a state-of-the-art algorithm. However, it can be observed from the FIMI 03 experiments that its efficient behavior does not occur for low minimum supports on sparse databases. Aiming at improving kDCI++ and making it even more competitive, we present the kDCI-3 algorithm. This proposal directly accesses candidates not only in the two initial iterations but specially in the third one, which represents, in general, the highest computational cost of kDCI++ for low minimum supports. Results have shown that kDCI-3 outperforms kDCI++ in the conducted experiments. When compared to other important algorithms, kDCI-3 enlarged the number of times kDCI++ presented the best behavior. |