Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Oestereich, André Luis |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://app.uff.br/riuff/handle/1/3332
|
Resumo: |
This dissertation explores some diferences between quantum mechanics and other theories from a computational perspective, in particular with respect to the kind of correlations they allow, and their computational consequences. It starts with an operational characterization of locality, no-signaling and noncontextuality. Then it proceeds to an introduction to measurement-based quantum computation, a model in which quantum correlations are used to perform computation. Such a model is then generalized in a framework, proposed by Anders and Browne [1] and studied by Raussendorf [2], that aims to make the computational power of correlations more evident. We proceed to see that noncontextual resources do not provide a computational enhancement and that quantum resources do provide it even without adaptivity. We continue by reviewing a scheme for reliable computation using faulty components, rst proposed by von Neumann and later studied by Hajek and Weller [3] and Evans and Schulman [4]. This scheme is then used to show how a range of bipartite quantum correlations su ce for reliable computation. We conclude by showing that quantum correlations that violate non-contextuality bounds by an arbitrarily small amount can be used to enable reliable computation |