Computational expressiveness of correlations

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Oestereich, André Luis
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://app.uff.br/riuff/handle/1/3332
Resumo: This dissertation explores some diferences between quantum mechanics and other theories from a computational perspective, in particular with respect to the kind of correlations they allow, and their computational consequences. It starts with an operational characterization of locality, no-signaling and noncontextuality. Then it proceeds to an introduction to measurement-based quantum computation, a model in which quantum correlations are used to perform computation. Such a model is then generalized in a framework, proposed by Anders and Browne [1] and studied by Raussendorf [2], that aims to make the computational power of correlations more evident. We proceed to see that noncontextual resources do not provide a computational enhancement and that quantum resources do provide it even without adaptivity. We continue by reviewing a scheme for reliable computation using faulty components, rst proposed by von Neumann and later studied by Hajek and Weller [3] and Evans and Schulman [4]. This scheme is then used to show how a range of bipartite quantum correlations su ce for reliable computation. We conclude by showing that quantum correlations that violate non-contextuality bounds by an arbitrarily small amount can be used to enable reliable computation