Modelos e técnicas dinâmicas utilizadas na simulação de conformação de chapas através do método de elementos finitos
Ano de defesa: | 1998 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Programa de Pós-graduação em Engenharia Metalúrgica
Engenharia metalúrgica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://app.uff.br/riuff/handle/1/20977 |
Resumo: | A necessidade de redução do tempo e dos custos de geração de um projeto faz com que a indústria mundial utiliza cada vez mais métodos de simulação numérica para o desenvolvimento de seus produtos. Dentre estes, o método de elementos finitos (MEF) tem se destacado por proporcionar uma maior flexibilidade e capacidade de fornecer soluções detalhadas das variáveis envolvidas nas análises. O objetivo do presente trabalho é avaliar quais os modelos e métodos de solução são mais adequados e mais eficientes na simulação da conformação de chapas pelo MEF, através de modificações dos parâmetros matemáticos de simulação tais como: técnica de integração no tempo (implícita ou explícita), modelamento do contato, influência do amortecimento, velocidade de análise, refino de malha, efeitos de inércia, etc. Avaliam-se os resultados, tanto a nível de custo computacional quanto a nível de precisão dos resultados. Para tanto, é simulado o ensaio de estiramento de chapas finas proposto pela Universidade do Estado de Ohio e o embutimento de uma lata de atum produzido pela Quacker. Em todos os modelos são introduzidos as propriedades intrínsecas dos materiais de modo a tornar o modelo o mais realístico possível. É utilizado o código ABAQUS, para se realizar as simulações. Observa-se, que apesar do método implícito dinâmico possuir uma melhor precisão nos resultados simulados, quando comparados com os resultados experimentais (espessura, deformações e força de conformação), apresenta um elevado custo computacional. Em virtude de tal fato, o método explícito dinâmico apresenta uma melhor relação custo/benefício. Conclui-se que a inércia, relacionada com a velocidade imposta ao modelo, apresenta uma grande influência na acurácia dos resultados, o mesmo já não acontece com a aceleração. Observa-se também que, mesmo para níveis de velocidade muito baixos (1 m/s) a relação energia cinética/energia de deformação é superior a 5%. Outro aspecto que apresenta elevada influência na precisão dos resultados é o refino da malha tanto da chapa como do ferramental. Finalmente, a introdução do amortecimento mostra ser bastante prejudicial à análise. |