Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Acahuana, Yeltsin |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://app.uff.br/riuff/handle/1/9350
|
Resumo: |
O número de rotação introduzido po rHenri Poincaré em [Poi85] é sem dúvida alguma o invariante dinâmico fundamental no estudo dos homeomorfismos do círculo (que preservam orientação). Neste trabalho começamos lembrando os resultados centrais relativos ao número de rotação e os fundamentos da já clássica teoria de Poincaré. A continuação, entramos no que é o cerne mesmo deste trabalho, o estudo dinâmico dos endomorfismos do círculo, i.e. aplicações contínuas do círculo nele mesmo de grau 1. Para isso introduziremos o conceito de conjunto de rotação e apresentaremos diversos resultados devidos a Newhoue, Palis e Takens [NPT83], Bamón, Malta, Pacífico e Takens [BMPF84] e Ito [Ito81] que visam compreender as propriedades topológicas do conjunto de rotação, assim como as propriedades dinâmicas dos endomorfismos que podem ser extraídas destes conjuntos |