Conjuntos de rotação de endomorfismos do círculo

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Acahuana, Yeltsin
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://app.uff.br/riuff/handle/1/9350
Resumo: O número de rotação introduzido po rHenri Poincaré em [Poi85] é sem dúvida alguma o invariante dinâmico fundamental no estudo dos homeomorfismos do círculo (que preservam orientação). Neste trabalho começamos lembrando os resultados centrais relativos ao número de rotação e os fundamentos da já clássica teoria de Poincaré. A continuação, entramos no que é o cerne mesmo deste trabalho, o estudo dinâmico dos endomorfismos do círculo, i.e. aplicações contínuas do círculo nele mesmo de grau 1. Para isso introduziremos o conceito de conjunto de rotação e apresentaremos diversos resultados devidos a Newhoue, Palis e Takens [NPT83], Bamón, Malta, Pacífico e Takens [BMPF84] e Ito [Ito81] que visam compreender as propriedades topológicas do conjunto de rotação, assim como as propriedades dinâmicas dos endomorfismos que podem ser extraídas destes conjuntos