Modelo causal para análise probabilística de risco de falhas de motores a jato em situação operacional de fabricação

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Pereira, José Cristiano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://app.uff.br/riuff/handle/1/4078
Resumo: O processo de fabricação de motores a jato é complexo. Perigos e riscos e muitos elementos críticos estão presentes em milhares de atividades necessárias para fabricar um motor. Na investigação realizada nota-se a inexistência de um modelo específico para calcular quantitativamente a probabilidade de falha operacional de um motor à jato. O objetivo da tese foi desenvolver um modelo causal para análise de risco probabilística de falhas de motores a jato em situação operacional de fabricação. O modelo se caracteriza pela aplicação de rede Bayesiana associada à árvore de falha / árvore de evento e elicitação de probabilidades por especialistas para quantificar a probabilidade de falha. Para a concepção da construção do modelo, foi inicialmente desenvolvida uma pesquisa bibliométrica, através da consulta aos principais motores de busca nacionais e internacionais, em periódicos científicos e técnicos, bancos de dissertações/teses e eventos técnicos relacionados ao tema, para estabelecimento dos estado-da-arte e da técnica. Para a estimativa das probabilidades associadas aos cenários de falhas propostos, foi desenvolvido um processo de elicitação de probabilidade a partir da consulta a especialistas e técnicos. Na concepção do modelo foram consideradas três áreas de influência para a confiabilidade do sistema: humana, software e calibração. Como resultado foi desenvolvido o modelo CAPEMO, que é suportado por um aplicativo que utiliza a teoria das probabilidades (Lei de Bayes) para modelar incerteza. A probabilidade de falha estimada ao final da processo de fabricação, antes do motor ser colocado em operação, contribui no processo de tomada de decisão, melhoria da segurança do sistema e redução de riscos de falha do motor em operação