Uma proposta de medida de relvância de atributos multivalorados para classificação

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Lôbo, Mariana Tasca Fontenelle
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Programa de Pós-Graduação em Computação
Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://app.uff.br/riuff/handle/1/18259
Resumo: An important step in the knowledgediscovery in databases (KDD) process is the attribute selection step, which aims at choosing a subset of attributes that can represent the important information within the data. Most of the attribute selection methods can only handle simple attribute types, such as categorical and numerical. In particular, these methods cannot be applied to multi-valued attributes, which are attributes that take multiple values simultaneously for the same instancein the database. In many real databases, however, multi-valued attributes are present - e. g. the types of books owned by a person may be represented by a multi-valued attribute. This dissertation proposes a relevance measure for multi-valued attributes, which aims at measuring their importance for classification. The proposed measure tahes into account the ability that the attribute has in determining the instance class. In order to evaluate the proposed measure, experiments were several datavbases subimitted to multi-relational classifiers. The experiments show that the resulting accurancy values follow, in most cases, the values of the proposed relevance measure. So we can conclude that the proposed measure is a good indicator of the relevance of multi-valued attributes for classification.