Modelo unificado para o setor escuro e a teoria de Rastall
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Doutorado em Física Centro de Ciências Exatas UFES Programa de Pós-Graduação em Física |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufes.br/handle/10/7486 |
Resumo: | In this thesis, we investigate the unification scenario provided by the generalised Chaplygin gas model (a perfect fluid characterized by an equation of state p = -A/?a ). Our concerns lie with a possible tension existing between background kinematic tests and those related to the evolution of small perturbations. We analyse data from the observation of the differential age of the universe, type Ia supernovae, baryon acoustic oscillations and the position of the first peak of the angular spectrum of the cosmic background radiation. We show that these tests favour negative values of the parameter a: we find a = -0.089+0.161 -0.128 at the 2s level and that a < 0 with 85% confidence. These would correspond to negative values of the square speed of sound which are unacceptable from the point of view of structure formation. We discuss a possible solution to this problem, when the generalised Chaplygin gas is framed in the modified theory of gravity proposed by Rastall. We show that a fluid description within this theory does not serve the purpose, but it is necessary to frame the generalised Chaplygin gas in a scalar field theory. Finally, we address the standard general relativistic unification picture provided by the generalised Chaplygin gas in the case a = 0: this is usually considered to be undistinguishable from the standard ?CDM model, but we show that the evolution of small perturbations, governed by the Mészáros equation, is indeed different and the formation of sub-horizon GCG matter halos may be importantly affected in comparison with the ?CDM scenario |