Soluções de vórtice das equações de Ginzburg-Landau
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Mestrado em Matemática Centro de Ciências Exatas UFES Programa de Pós-Graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufes.br/handle/10/7508 |
Resumo: | In this work we study a theorem of C.H. Taubes concerning vortex solution to the Ginzburg-Landau equations, which describe superconductivity. To prove the theorem we need to show the existence of a solution to a non-linear elliptic partial di erential equation of second order. To obtain the existence of solution we study a non-linear functional de ned on an appropriate Sobolev space. We also include two auxiliary chapters concerning complex line bundles and analytical preliminaries. |