Soluções de vórtice das equações de Ginzburg-Landau

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Galkina, Olesya
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Matemática
Centro de Ciências Exatas
UFES
Programa de Pós-Graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
51
Link de acesso: http://repositorio.ufes.br/handle/10/7508
Resumo: In this work we study a theorem of C.H. Taubes concerning vortex solution to the Ginzburg-Landau equations, which describe superconductivity. To prove the theorem we need to show the existence of a solution to a non-linear elliptic partial di erential equation of second order. To obtain the existence of solution we study a non-linear functional de ned on an appropriate Sobolev space. We also include two auxiliary chapters concerning complex line bundles and analytical preliminaries.