Rede Neural Probabilística para a Classificação de Atividades Econômicas

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Ciarelli, Patrick Marques
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/4056
Resumo: Thisworkpresents anapproach basedonArtificialNeuralNetworksforproblemsofmulti-label classification.In particular,was useda modifiedversionof ProbabilisticNeuralNetworkto handlesuch problems.In experiments carriedoutin variousdatabasesknownin theliterature,theProbabilisticNeuralNetworkproposalpresenteda performancecomparable,andsometimesevensuperiorto otheralgorithmsspecializedin thistype ofproblem.Asthemainfocusof thisworkwas thestudyof strategiesforautomatictextclassi-ficationof economicactivitiesthenwerealsoconductedexperiments usinga databaseofeconomicactivities.However,unlike of databasesusedpreviously, thisdatabaseshowsahugenumber of categoriesandfewsamplesof trainingby category, which increasesthedegreeof difficulty thisproblem.In theexperiments wereusedto ProbabilisticNeuralNetworkproposal,theclassifierMulti-label k-NearestNeighbor anda GeneticAlgorithmforoptimizationof theparameters.Themetricsusedto evaluationof performancehaveshownthattheresultsof ProbabilisticNeuralNetworkweresuperiorandcomparabletotheresultsobtainedby theMulti-label k-NearestNeighbor,showingthattheapproachusedin thisworkis promising.