Equivalent grid-following inverter-based generator model for ATP/ATPDraw fast time-domain simulations

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Luchini, Matheus Bassani
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
ATP
IBR
Link de acesso: http://repositorio.ufes.br/handle/10/17143
Resumo: Due to the increasing penetration of inverter-based resources (IBR) in modern power grids, most phasor-domain models became insufficient to represent the system dynamics during steady-state and fault conditions. As a result, IBR time-domain models gained importance. However, complete models that include switching elements and their respective controllers are usually time-consuming and difficult to initialize, especially in systems with several IBRs connected. Thus, this work presents an equivalent time-domain gridfollowing inverter-based generator (IBG) model, which can be used in Electromagnetic Transients Programs (EMTP). The proposed IBG model is developed in the Alternative Transients Program (ATP) using the ATPDraw graphical interface. A complete benchmark photovoltaic model available in ATP/ATPDraw environment is taken as reference to evaluate the proposed equivalent IBG model under steady-state and fault scenarios. The obtained results showed that the proposed model is simpler and less time-consuming than the complete model, being capable of easily considering the implementation of different components/controls of IBR in EMTP. The settings used in the implemented control schemes proved to be effective, resulting in an average error of about 2.21% during fault conditions. Also, a reduction of about 70 % in the execution time was achieved when compared to the analyzed benchmark one, attesting its usefulness for power system studies with high presence of grid-following IBRs.