Cálculo variacional de aplicações harmônicas e bi-harmônicas

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Bernardino, Willerson Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Matemática
Centro de Ciências Exatas
UFES
Programa de Pós-Graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/12373
Resumo: In this work, we will explore some basic results of the theory of harmonic and biharmonic maps. A smooth application f : (M, g) ! (N, h) between two Riemannian manifolds with M compact will be called harmonic when it is a critical point of the energy functional, and biharmonic when it is a critical point of the bi-energy functional. Consequently, we will derive the formula for the first variation of the energy functional and prove that an application is harmonic if and only if its tension field vansh. Similarly, we will calculate the formula for the first variation of the bi-energy functional and demonstrate that a map is biharmonic if and only if its bi-tension field vanish. Finally, we will calculate the formula for the second variation for harmonic and biharmonic maps, and we will study conditions for stability.