Formulações estabilizadas submalhas aplicadas às equações de Euler

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Mattos, Roberta Nunes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Informática
Centro Tecnológico
UFES
Programa de Pós-Graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
004
Link de acesso: http://repositorio.ufes.br/handle/10/4237
Resumo: This work presents an implementation of the finite element method to solve the system of two-dimensional compressible Euler equations in conservation variables, using the Dynamic Diffusion subgrid stabilization method, considering static and transient subgrid scales. This method is based on the multiscale formalism and has been proposed to solve convection-dominant transport problems. A nonlinear dissipative operator acting isotropically in all discretization scales is added to the Galerkin method. We let the subgrid scales very in time, and thus they need to be tracked. Then, we propose a closed-form expression for them at each time step. A second order implicit predictor multicorrector scheme is used for time integration and the linear systems resulting are solved by the GMRES iterative method. We consider a set of classic experiments: normal shock, oblique shock and reflected shock. Numerical experiments shown that the method Diffusion Dynamics - with transient subgrid scales - results in more accurate solutions than the stabilized methods SUPG/CAU e SUPG/YZβ.