Modelagem direta de integrais de domínio em problemas difusivo-advectivos usando funções radiais no contexto do método dos elementos de contorno

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Avelar, José Antônio Ramiro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Mecânica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Mecânica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
621
Link de acesso: http://repositorio.ufes.br/handle/10/9810
Resumo: The research involved in this dissertation is based on the so-called DIBEM (Boundary Element Method with Direct Interpolation) which directly interpolates the inhomogeneous term of the government differential equation using the Boundary Element Method (BEM). The DIBEM uses a primitive of the original interpolation function in the kernel of the domain integral, allowing the latter processing a boundary integral, similarly to that performed in the Dual Reciprocity, thus avoiding domain discretization by cells This new formulation has well succeeded in solving well known problems of great interest and difficulty in engineering, such as the governed by the Poisson Equation and the Helmholtz Equation. Following the natural scale of complexity, considering the Generalized Scalar Field Equation as reference, the diffusive-advective problems which evaluate the thermal effects of transport by a fluid (advection) together with conduction are approached. This phenomenon is very common in engineering problems such as: the formation of the boundary layer of a laminar fluid flow; the heat transmission with the association between the spread in the continuous medium (conduction) and transport by flow (advection). These problems continue to require constant improvement in the implementation of numerical methods. Therefore, the applicability and accuracy of DIBEM are tested for solving problems characterized by unidirectional fluid flow on a control volume with different boundary conditions that are governed by the diffusion-advection phenomenon. For this purpose, 42 different meshes are generated to calculate both the flow and temperature as compared with the respective analytical values