Resolução de problemas nos processos de ensino de Matemática na Educação Básica: uma proposta com alunos do 6º ano do ensino fundamental

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Amaral, Andre Silveira do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Ensino, Educação Básica e Formação de Professores
Centro de Ciências Exatas, Naturais e da Saúde
UFES
Programa de Pós-Graduação Ensino, Educação Básica e Formação de Professores
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/12308
Resumo: Mathematical problem-solving is a teaching and learning methodology that enables students to construct their mathematical thinking. In this process, the teacher serves as a learning mediator and actively cooperates to provide learners with the opportunity to mobilize knowledge of mathematical concepts and procedures. The present study aimed to investigate how the teaching and learning methodology of problem-solving, proposed by George Polya, assists 6th-grade elementary school students in mobilizing mathematical knowledge to solve various types of mathematical problems. The research was qualitative, naturalistic, or field-based, involving students from Muqui municipal school, in the southern region of Espírito Santo. Data collection occurred through three stages: the application of the first set of problem situations; socialization; and the application of the second set of problem situations. The data obtained were analyzed using the four phases of the problem-solving process theory defined by Polya (2006). The studies demonstrate that problem-solving in the teaching of Mathematics is most effective when it is primarily based on the understanding of concepts and the existence of the phases leading to solution, including understanding, planning, plan execution, and, finally, reflection. Therefore, teaching Mathematics through contextualized problem-solving should be seen as an opportunity to educate, and formal content should be addressed through context-based themes from the students’ environment, constantly stimulating their imagination and encouraging them to create their own problem-solving strategies.