Combining heterogeneous data and deep learning models for skin cancer detection
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Doutorado em Ciência da Computação Centro Tecnológico UFES Programa de Pós-Graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufes.br/handle/10/14433 |
Resumo: | Currently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large training |