Gestão para o saneamento rural a partir da percepção dos stakeholders
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Mestrado Profissional em Engenharia e Desenvolvimento Sustentável Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia e Desenvolvimento Sustentável |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufes.br/handle/10/6909 |
Resumo: | Rural sanitation is treated in different ways, according to municipalities and states. The lack of a public policy that guides actions can lead to indetermination of responsible, redundant actions, waste of public resources and low assistance in these communities. There are no guidelines or studies that include the peculiarities of this activity could subsidize the formulation of a management tool for rural sanitation. Considering the need of a management platform to guide this peculiar sector, this paper aimed at a new framework based on the disseminated tool "Balanced Scorecard", based on the perceptions of its stakeholders. Semi-structured interviews were conducted with some actors related to the subject, which are grouped into four categories of activities: financing agencies, executive agencies, potential partners and regulatory agencies. Their responses were transcribed and analyzed by the content analysis method, following the BSC perspectives: concept and comprehensiveness, intangible values, process attributes and sustainability of actions. With this data and the scope of this interrelated approach, it is possible to know the stakeholders aspirations. The perceptions of the beneficiary population were not addressed in this study. It is fundamental a complementation with specific elements for data collection and adaptation of the model to the anxieties of this important component. |