Estudo do transporte atmosférico de MP10 e SO2 com os modelos WRF/CMAQ em regiões costeiras urbanas

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Loriato, Ayres Geraldo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Doutorado em Engenharia Ambiental
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Ambiental
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
628
Link de acesso: http://repositorio.ufes.br/handle/10/1722
Resumo: This work's main objective is to study atmospheric transportation of MP10 and SO2 in urban coastal areas using WRF/CMAQ modeling. Two main areas were chosen for this purpose. One is Great Vitória Area (GVA), in Espírito Santo State, Brasil; the other is Great Dunkerque Area (GDA), in Nord Pas-de-Calais, France. GVA is surrounded by a mountain range parallel to the coast, which makes its topography complex and rugged. On the other hand, GDA's topography is much smoother. Modeling inputs encompassed IEMA-ES' inventory of atmospheric pollutants emissions for GVA, and Nord Pas-de-Calais' inventory of ground level emissions named " Cadastre_totaux_3km_A2008 _M2010_V2_SNAPN2" for GDA. Both inventories showed restrictions, however. GVA's showed high traffic lanes resuspension in comparison with several studies, so those data were altered. Ground level data and large grid area (9 km2) of GDA inventory didn't allow for satisfying modeling results. Modeled results were validated by comparing them with two experimental campaigns: one performed in the city of Dunkerque, North of France, on September 2009; the other in Vitória, Southeast of Brazil, on July 2012. Experimental data were obtained through the use of Light Detection and Ranging (LIDAR), Sonic Detection and Ranging (SODAR), Surface Meteorological Stations (SMS) and atmospheric monitoring stations. Results of this work showed that: a) there is a need for continuous improvement on regional inventories of emissions, adapting them to specific local characteristics and focusing on obtaining parameters required for photochemical modeling; b) the direction and magnitude of velocity vectors obtained from meteorological modeling have a high impact on pollutant concentrations modeling; c) air quality in both GVA and GDA deserve attention, especially regarding MP10 concentrations. Based on monitoring stations data, the situation seems more critical in GDA; d) modeling in GVA was better than in GDA according to validation results; e) sea breeze inflow caused significant alteration on pollutants concentration, which was observed analyzing MP10 and SO2 dispersion dynamics. This phenomenon was more distinctive in GVA, where the sea breeze caused an oscillatory motion on the pollution plume, moving it to the urban agglomeration most densely populated neighborhoods. In GDA, sea breeze inflow wasn`t a daily phenomenon, and on the day when it occurred there was a change of almost 180º in the pollution plume direction of movement. In addition to vertical turbulence increase, which has already been studied by many authors, this study also focus on influence of sea-breeze of plume dynamics effects on dispersing atmospheric pollutants in coastal areas.