Taxonomia integrativa revela diversidade críptica em Trachops cirrhosus (Chiroptera, Phyllostomidae)
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Doutorado em Biologia Animal UFES Programa de Pós-Graduação em Ciências Biológicas |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufes.br/handle/10/11160 |
Resumo: | Trachops Gray, 1847 (Chiroptera: Phyllostomidae) is a monotypic carnivorous bat, with only Trachops cirrhosus (Spix, 1823) currently recognized. There are three subspecies that occupy a large part of the Neotropical region, occurring from southern Mexico to Nicaragua (T. c. coffini), from Costa Rica to the southeast and northeast of Brazil (T. c. cirrhosus) and from southern Brazil to Bolivia (T. c. ehrhardti). Although the genus has an ancient origin, ca. 17 million years ago, fossils of the species are scarce and relatively recent, dating to the Late Pleistocene and Holocene. Regarding its taxonomy, genetic studies have raised the hypothesis of cryptic speciation in the genus, but no work integrating different data matrices has been done to date. The main goal of the present study was to investigate the diversity of Trachops along its geographic distribution, integrating molecular, morphometric and ecological analyses, to understand the taxonomy of the genus. I used the General Lineage species concept and operational criteria based on: 1) monophyly in the molecular phylogenies based on one nuclear and three mitochondrial markers, morphometric divergence with analysis of Normal Mixture Models, and ecological niche divergence, through ecological niche modeling and niche identity test. In addition, Trachops phylogeography was also revisited using haplotype networks and divergence time estimates to understand the distribution patterns of genetic lineages. Results show that Trachops should be divided into 2 species: T. ehrhardti, monotypic, and T. cirrhosus, with 2 subspecies (T. c. cirrhosus e T. c. coffini). The phylogenetic analyses pointed to the existence of 7 geographically structured lineages with genetic divergences > 5%. Among these, the southern Atlantic Forest lineage (T. ehrhardti) was the most divergent, separating from its sister group (T. cirrhosus) about 7 million years ago. The coalescent species tree reinforces the idea that these two main lineages comprise distinct species, although statistical support for T. cirrhosus is relatively low in the gene tree. Morphometric analyses also point to the existence of 2 forms of Trachops: large sized and small sized. Although this difference is significant, it is not conspicuous, possibly due to the large geographic range of T. cirrhosus and, therefore, to the existence of intermediates. Trachops ehrhardti of the Atlantic Forest and T. c. coffini from Central America are of similar size, but show morphological differences. Trachops c. cirrhosus is larger, showing clinal size variation, and Panama seems to be the contact zone with T. c. coffini. The niche overlap test revealed greater overlap between T. ehrhardti and T. c. coffini, than between T. ehrhardti and its neighbor T. c. cirrhosus, suggesting that the similarity between niches may be acting to maintain similarities in size. In addition, the niche identity test corroborated the uniqueness of the niches for each taxon. Using these results, the genetic, ecologic, and morphometric distinction between T. ehrhardti and T. cirrhosus is clear. 11 Trachops ehrhardti shows little haplotype sharing, and diversification only during the Pleistocene. Trachops cirrhosus has high haplotypic diversity and FST values are expected for panmitic populations, although comprising 6 geographically structured lineages. The origin of the genus seems to have been in South America, given that T. c. coffini originated 2.96 million years ago, coinciding with the most recent estimate for the closure of the Isthmus of Panama. The broadest ranged lineage of T. cirrhosus occupies several biomes of South America, including the Atlantic Forest of northeastern Brazil. The current floristic differences between the southern and northern Atlantic Forest and all biotic and abiotic interactions involved may represent ecological barriers for the two species of Trachops |