Adaptação dos modelos de Markov para um sistema de segmentação e classificação de sinais de eletrocardiograma
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Espírito Santo
BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.ufes.br/handle/10/6209 |
Resumo: | In this work three incremental adaptation methods for the hidden Markov models (HMM) are studied and implemented, which are based on the Expectation-Maximization (EM), Segmental k-Means and Maximum a Posteriori (MAP) algorithms. These methods, already used in the speech recognition field, are applied here in the electrocardiogram (ECG) segmentation problem. For that, it was used an ECG analysis system able to segment and classify cardiac diseases, like premature ventricular contraction (PVC) and ischemia. The use of these methods allow us to adjust the models to the signal fluctuations commonly met during ambulatory recording. The methods can also be implemented for other kinds of biomedical signals, like electroencephalogram (EEG). |