Extração de características e classificação de sinais sEMG aplicados a uma prótese de mão virtual

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Tello, Richard Junior Manuel Godinez
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Espírito Santo
BR
Mestrado em Engenharia Elétrica
Centro Tecnológico
UFES
Programa de Pós-Graduação em Engenharia Elétrica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufes.br/handle/10/6198
Resumo: This work proposes the classification of motor tasks, using surface electromyography (sEMG) to control a prosthetic hand for rehabilitation of amputees. Two types of classifiers are compared: k-Nearest Neighbor (k-NN) and Bayesian (Discriminant Analysis). Motor tasks are divided into four groups correlated. The volunteers were healthy people (without amputation) and several analyzes of each of the signals were conducted. For offline analysis, the features used were: RMS (Root Mean Squared), VAR (Variance) and WL (Waveform Length). For online experimentation, it involved the use of feature of Discriminant of Bi-spectral. In both cases, either online or offline techniques were used to sliding windows. A model is proposed for reclassification using cross-validation in order to validate the classification, and a visualization in Sammon Maps is provided in order to observe the separation of the classes for each set of motor tasks. The proposed method can be implemented in a computer interface providing a visual feedback through an artificial hand prosthetic developed in Visual C++ and MATLAB commands